Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(4): 5068-5079, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313529

RESUMO

Zn-Fe layered double hydroxide (LDH) was synthesized through the low-temperature-based coprecipitation method. Various concentrations of Ag (1, 3, and 5 wt %) with a fixed amount (5 wt %) of polyvinylpyrrolidone (PVP) were doped into LDH nanocomposites. This research aims to improve the bactericidal properties and catalytic activities of doping-dependent nanocomposites. Adding Ag and PVP to LDH enhanced oxygen vacancies, which increased the amount of hydroxide adsorption sites and the number of active sites. The doped LDH was employed to degrade rhodamine-B dye in the presence of a reducing agent (NaBH4), and the obtained results showed maximum dye degradation in a basic medium compared to acidic and neutral. The bactericidal efficacy of doped Zn-Fe (5 wt %) showed a considerably greater inhibition zone of 3.65 mm against Gram-negative (G-ve) or Escherichia coli (E. coli). Furthermore, molecular docking was used to decipher the mystery behind the microbicidal action of Ag-doped PVP/Zn-Fe LDH and to propose an inhibition mechanism of ß-ketoacyl-acyl carrier protein synthase IIE. coli (FabH) and deoxyribonucleic acid gyrase E. coli behind in vitro results.

2.
Int J Biol Macromol ; 263(Pt 1): 130096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354925

RESUMO

Co-precipitation method was adopted to synthesize ternary heterostructure catalysts La/CS-CoSe NSs (lanthanum/chitosan­cobalt selenide nanostructures) without the use of a surfactant. During synthesis, a fixed amount (3 wt%) of CS was doped with 2 and 4 wt% La to control the growth, recombination rate and stability of CoSe NSs. The doped samples served to enhance the surface area, porosity and active sites for catalytic degradation of rhodamine B dye and antibacterial potential against Staphylococcus aureus (S. aureus). Additionally, the synthesized catalysts were examined for morphological, structural and optical characteristics to assess the influence of dopants to CoSe. XRD spectra verified the hexagonal and cubic structure of CoSe, whereas the porosity of the undoped sample (CoSe) increased from 45 to 60 % upon incorporation of dopants (La and Cs). Among the samples analyzed during this study, 4 % La/CS-CoSe exhibited significant bactericidal behavior as well as the highest catalytic reduction of rhodamine B dye in a neutral environment. Molecular docking analysis was employed to elucidate the underlying mechanism behind the bactericidal activity exhibited by CS-CoSe and La/CS-CoSe NSs against DHFRS. aureus and DNA gyraseS. aureus.


Assuntos
Quitosana , Nanoestruturas , Simulação de Acoplamento Molecular , Staphylococcus aureus , Antibacterianos/farmacologia , Cobalto
4.
Chem Asian J ; : e202301100, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38275189

RESUMO

Doping conventional materials with a second element is an exciting strategy for enhancing catalytic performance via electronic structure modifications. Herein, Mn-doped CdS thin films were successfully synthesized with the aid of the chemical bath deposition (CBD) by varying the pH value (8, 10, and 12) and the surfactant amount (20, 40, 60 mg). Different morphologies like nano-cubes, nanoflakes, nano-worms, and nanosheets were obtained under different deposition conditions. The optimized Mn-doped CdS synthesized at pH=8 exhibited better photoelectrochemical (PEC) performance for oxygen evolution reaction (OER) than pure CdS films, with a maximum photocurrent density of 300 µA/cm2 at an external potential of 0.5 V, under sunlight illumination. The observed performance is attributed to the successful Mn doping, porosity, high surface area, and nanosphere morphology.

5.
Microsc Res Tech ; 87(5): 957-976, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38174385

RESUMO

The present exploration demonstrates the efficient, sustainable, cost-effective, and environment-friendly green approach for the synthesis of silver (Ag)-doped copper oxide (CuO) embedded with reduced graphene oxide (rGO) nanocomposite using the green one-pot method and the green deposition method. Leaf extracts of Ficus carica and Azadirachta indica were used for both methods as reducing and capping agents. The effect of methodology and plant extract was analyzed through different characterization techniques such as UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM). The lowest band gap of 3.0 eV was observed for the Ag/CuO/rGO prepared by the green one-pot method using F. carica. The reduction of graphene oxide (GO) and the formation of metal oxide was confirmed through functional group detection using FT-IR. Calculation of thermodynamic parameters showed that all reactions involved were nonspontaneous and endothermic which shows the stability of nanocomposites. XRD studies revealed the crystallinity, phase purity and small average crystallite size of 32.67 nm. SEM images disclosed that the morphology of the nanocomposites was spherical with agglomeration and rough texture. The particle size of the nanocomposites calculated through HRTEM was found in agreement with the XRD results. The numerous properties of the synthesized nanocomposites enhanced their potential against the degradation of methylene blue, rhodamine B, and ciprofloxacin. The highest percentage degradation of Ag/CuO/rGO was found to be 97%, synthesized using the green one-pot method with F. carica against ciprofloxacin, which might be due to the lowest band gap, delayed electron-hole pair recombination, and large surface area available. The nanocomposites were also tested against the Gram-positive and Gram-negative bacteria. RESEARCH HIGHLIGHTS: Facile synthesis of Ag/CuO/rGO nanocomposite using a green one-pot method and the green deposition method. The lowest band gap of 3.0 eV was observed for nanocomposite prepared by a green one-pot method using Ficus carica. Least average crystallite size of 32.67 nm was found for nanocomposite prepared by a green one-pot method using F. carica. Highest antibacterial and catalytic activity (97%) was obtained against ciprofloxacin with nanocomposite prepared through green one-pot method using F. carica. A mechanism of green synthesis is proposed.


Assuntos
Azadirachta , Ficus , Grafite , Nanopartículas Metálicas , Nanocompostos , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanocompostos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ciprofloxacina , Nanopartículas Metálicas/química
6.
ACS Omega ; 9(1): 1603-1613, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222666

RESUMO

A coprecipitation approach was employed to synthesize aluminum oxide (Al2O3) with a fixed quantity of graphitic carbon nitride (g-C3N4) and various concentrations of Mg (2 and 4 wt. %). The main objective of this research is to explore and enhance the dye degradation potential and antimicrobial efficacy of synthesized pristine and doped Al2O3 with molecular docking analysis. Al2O3 has potent mechanical, thermal, antimicrobial, phosphoric, optical, and electrical properties, but it leaches into water and has a high band gap and low refractive index. g-C3N4 was incorporated into Al2O3 to increase the degradation potency. The incorporation of Mg enhances the metal oxide characteristics and performance in catalysis. XRD patterns revealed the orthorhombic phase of Al2O3. The SAED pattern of Al2O3 and (2 and 4 wt %) Mg/g-C3N4-Al2O3 nanostructures (NSs) showed bright polycrystalline rings. UV-visible spectra showed the absorption of Al2O3 at 289 nm, and upon doping, a blue shift was accompanied. The EDS spectra indicated the existence of Al, O, Na, and Mg, thereby verifying the elemental composition of the pristine and doped samples. TEM images revealed the nanowires (NWs) of Al2O3. The NSs demonstrated outstanding catalytic performance for the remediation of RhB dye in a basic medium of around 97.36%. Mg/g-C3N4-Al2O3 (4 wt %) exhibited a notable augmentation in the inhibition zone, measuring 5.25 mm, when exposed to high-level doses against Staphylococcus aureus. In silico predictions have recently shed light on the underlying mystery of the bactericidal actions of these doped NSs against specific enzyme targets such as DNA gyraseS. aureus.

7.
Int J Biol Macromol ; 258(Pt 1): 128885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143064

RESUMO

The harmful cationic dyes present in industrial waste significantly decrease the effectiveness of remedy operations. Considering the horrendous impact of these dyes on the environment and biodiversity, silver bromide (AgBr) and chitosan (CS) doped copper ferrite (CuFe2O4) nanostructures (NSs) were prepared by the co-precipitation route. In this work, The surface characteristics of CuFe2O4 can be altered by CS, potentially enhancing its catalytic reaction compatibility. The functional groups in CS interact with the surface of CuFe2O4, influencing its catalytic behavior. AgBr can have an impact on the dynamics of charge carriers in the composite. Better charge separation and transfer which is essential for catalytic processes. The catalytic degradation of RhB was significantly enhanced (100 %) using 4 wt% of AgBr-doped CS-CuFe2O4 catalysts in a basic medium. The significant inhibitory zones (9.25 to 17.95 mm) inhibitory in maximum doses were seen against Gram-positive bacteria (S. aureus). The bactericidal action of AgBr/CS-doped CuFe2O4 NSs against DNA gyraseS.aureus and tyrosyl-tRNAsynthetase S. aureus was rationalized using molecular docking studies, which supported their function as inhibitors.


Assuntos
Quitosana , Simulação de Acoplamento Molecular , Rodaminas , Staphylococcus aureus , Corantes
8.
J Colloid Interface Sci ; 658: 758-771, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150932

RESUMO

Solar-driven desalination is considered an alternative to the conventional desalination due to its nearly zero carbon footprint and ease of operating in remote areas. Water can be purified wherever sunlight is available, providing a viable solution to water shortage. Metal chalcogenide-based materials are revolutionary for solar evaporators due to their excellent photothermal conversion efficiency, facile synthesis methods, stability, and low cost. Herein we present a prototype Bi-doped CoTe nano-solar evaporator embedded on leno weave cotton gauze (Bi/CoTe@CG) using the sonication process. The nano-solar evaporator was synthesized using a simple hydrothermal approach to provide an opportunity to scale up. The as designed solar evaporator consisting of 5 % Bi/CoTe@CG showed an excellent water flux of 2.38 kg m-2 h-1 upon one sun radiation (1 kW m-2), considered among the highest literature-reported values. The introduced solar evaporator showed excellent solar efficiency of 96.7 %, good stability, and reusability for five cycles of one hour. The best doping ratio of Bi in CoTe was obtained as Bi0.5Co9.5Te with a contact angle of 11.9° in powder form. The hydrophilic nature of the designed solar-evaporator increased the water interaction with the embedded nano-solar evaporator, which helps the transfer of the heat to nearby water molecules, break their hydrogen bonding and increase the evaporation rate. The ion concentration, of the desalinated pure water collected using Bi/CoTe@CG, decreased by many orders of magnitude and it is far below the limit of WHO standards for Na+ and K+. Thus, a self-floating Bi-doped CoTe nano-solar evaporator deposited on cotton gauze (CG) is an excellent solar evaporator for seawater desalination. The proposed solar evaporator is another step towards introducing environmentally friendly desalination methods.

9.
Glob Chall ; 7(12): 2300118, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094862

RESUMO

Various concentrations of samarium-grafted-carbon nitride (Sm-g-C3N4) doped-bismuth oxobromide (BiOBr) quantum dots (QDs) are prepared by the co-precipitation method. Elemental evaluation, morphological, optical, and functional group assessment are studied employing characterization techniques. Based on the XRD pattern analysis, it is determined that BiOBr exhibits a tetragonal crystal structure. The electronic spectroscopy revealed an absorption peak for BiOBr at 315 nm and the bandgap energy (E g) decreasing from 3.9 to 3.8 eV with the insertion of Sm-g-C3N4. The presence of vibrational modes related to BiOBr at 550 cm-1 is confirmed through FTIR spectra. TEM revealed that pure BiOBr possessed non-uniform QDS, and agglomeration increased with the addition of Sm-g-C3N4. The catalytic performance of Sm-g-C3N4 into BiOBr (6 mL) in a neutral medium toward rhodamine B exhibited excellent results (99.66%). The bactericidal activity is evaluated against multi-drug resistance (MDR) Escherichia coli once the surface area is increased by dopant and the measured inhibition zone is assessed to be 3.65 mm. Molecular docking results supported the in vitro bactericidal potential of Sm-g-C3N4 and Sm-g-C3N4 doped-BiOBr as DNA gyraseE. coli inhibitors. This study shows that the novel Sm-g-C3N4 doped-BiOBr is a better catalyst that increases specific semiconductor's catalytic activity (CA).

10.
Nanoscale Adv ; 6(1): 233-246, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38125601

RESUMO

We have employed a co-precipitation method to synthesize different concentrations of carbon spheres (CSs) doped with cadmium sulfide (CdS) quantum dots (QDs) for catalytic reduction and antibacterial applications. Various morphological and structural characterization techniques were used to comprehensively analyze the CS effect on CdS QDs. The catalytic reduction efficiency of CS-doped CdS QDs was evaluated using rhodamine B dye. The antibacterial efficacy was also assessed against the pathogenic microorganism Escherichia coli (E. coli), and substantial destruction in the inhibitory zone was measured. Finally, the synthesized CS-doped CdS QDs demonstrated favorable results for catalytic reduction and antibacterial applications. Computational studies verified the suppressive impact of these formed QDs on DNA gyrase and ß-lactamase of E. coli.

11.
Sci Rep ; 13(1): 18785, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914792

RESUMO

Presently, there is considerable emphasis on biological synthesis of nanoparticles containing bioactive reducing compounds with an aim to mitigate the harmful effects of pollutants. The approach under study is simple and ideal for the production of durable antimicrobial nanomaterials by novel single-step green synthesis of TiO2 metal oxide nanostructures using ginger and garlic crude aqueous extracts with bactericidal and catalytic activity. A variety of experimental techniques were used to characterize the synthesized nanomaterials. As demonstrated using x-ray diffraction and ultra-violet visible spectroscopy, the produced nanoparticles exhibited high absorption at 318 nm with size varying between 23.38 nm for ginger and 58.64 nm for garlic in biologically-reduced TiO2. At increasing concentrations (500, 1000 µg/50 µl), nanoparticles reduced with garlic exhibited enhanced bactericidal efficacy against multiple drug-resistant S. aureus and effectively decomposed toxic methylene blue (MB) dye. In conclusion, biologically-reduced TiO2 nanoparticles may prove an effective tool in the fight against microbial illnesses and drug resistance.


Assuntos
Mastite Bovina , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Animais , Feminino , Bovinos , Staphylococcus aureus , Nanopartículas Metálicas/química , Mastite Bovina/tratamento farmacológico , Antibacterianos/química , Difração de Raios X , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Polymers (Basel) ; 15(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38006094

RESUMO

Three-dimensional printing (3DP), known as additive layer manufacturing (ALM), is a manufacturing process in which a three-dimensional structure is constructed by successive addition of deposited layers. Fused Deposition Modeling (FDM) has evolved as the most frequently utilized ALM process because of its cost-effectiveness and ease of operation. Nevertheless, layer adhesion, delamination, and quality of the finished product remain issues associated with the FDM process parameters. These issues need to be addressed in order to satisfy the requirements commonly imposed by the conventional manufacturing industry. This work is focused on the optimization of the FDM process and post-process parameters for Polylactic acid (PLA) samples in an effort to maximize their tensile strength. Infill density and pattern type, layer height, and print temperature are the process parameters, while annealing temperature is the post-process parameter considered for the investigation. Analysis based on the Taguchi L18 orthogonal array shows that the gyroid infill pattern and annealing cycle at 90 °C results in a maximum ultimate tensile strength (UTM) of 37.15 MPa. Furthermore, the regression model developed for the five variables under study was able to predict the UTS with an accuracy of more than 96%.

13.
Sci Rep ; 13(1): 17847, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857696

RESUMO

The environmental-friendly hydrothermal method has been carried out to synthesize Bi2WO6 and g-C3N4/PVP doped Bi2WO6 nanorods (NRs) by incorporating different concentrations of graphitic carbon nitride (g-C3N4) as well as a specified quantity of polyvinylpyrrolidone (PVP). Bi2WO6 doped with g-C3N4 provides structural and chemical stability, reduces charge carriers, degrades dyes, and, owing to lower bandgap energy, is effective for antibacterial, catalytic activity, and molecular docking analysis. The purpose of this research is the treatment of polluted water and to investigate the bactericidal behavior of a ternary system. The catalytic degradation was performed to remove the harmful rhodamine B (RhB) dye using NaBH4 in conjunction with prepared NRs. The specimen compound demonstrated antibacterial activity against Escherichia coli (E. coli) at both high and low concentrations. Higher doped specimens of g-C3N4/PVP-doped Bi2WO6 exhibited a significant improvement in efficient bactericidal potential against E. coli (4.55 mm inhibition zone). In silico experiments were carried out on enoyl-[acylcarrier-protein] reductase (FabI) and ß-lactamase enzyme for E. coli to assess the potential of Bi2WO6, PVP doped Bi2WO6, and g-C3N4/PVP-doped Bi2WO6 NRs as their inhibitors and to justify their possible mechanism of action.


Assuntos
Bismuto , Povidona , Simulação de Acoplamento Molecular , Povidona/farmacologia , Bismuto/química , Luz , Corantes/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química
14.
ACS Omega ; 8(38): 34805-34815, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779977

RESUMO

This study was used to evaluate the catalytic activity (CA) and bactericidal activity of α-MoO3 and Sm-g-C3N4-doped α-MoO3 composites prepared through an efficient, cost-effective coprecipitation route. Their characteristic studies verify the formation of α-MoO3 and its composites (3, 6, and 9 mL Sm-g-C3N4-doped α-MoO3), which showed high crystallinity, as confirmed by X-ray diffraction (XRD) analysis. The production of superoxide and hydroxyl radicals due to charge transfer through α-MoO3 and g-C3N4 eventually forms electrons in g-C3N4 and holes around α-MoO3. CA against Rhodamine B (RhB) in basic medium provides maximum results compared to acidic and neutral media. The bactericidal efficacy of the (9 mL) doped sample represents a greater inhibition zone of 6.10 mm against the negative bacterial strain Escherichia coli. Furthermore, in silico studies showed that the generated nanorods may inhibit DNA gyrase and dihydropteroate synthase (DHPS) enzymes.

15.
ACS Omega ; 8(40): 37564-37572, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37841132

RESUMO

As the population grows, the scientific community remains focused on researching new materials, methods, and devices to ensure the availability of safe drinking water. The main aim of this research was to decrease the recombination rate of the charge carriers of La2O3 and enhance the catalytic and antimicrobial activity by employing Y/Cs- doped La2O3, respectively. In the current study, different concentrations of yttrium (Y) and a fixed amount of carbon spheres (Cs) doped into lanthanum oxide (La2O3) nanostructures (NSs) were synthesized by the coprecipitation technique. Cs are used as a cocatalyst as they have a high surface area and small size attributed to increased active sites and decreased recombination rate. Moreover, Y was further incorporated as it activates the generation of reactive oxygen species in the inhibition zone, enhancing the antibacterial activity and reducing the emission intensity. Advanced techniques were utilized to determine the structural properties, optical emission and absorption, elemental composition, and d-spacing of the synthesized samples. The reported ternary catalyst works efficiently, improving the catalytic activity and bactericidal potential. Moreover, in silico molecular docking studies, Cs-doped La2O3 and Y/Cs-doped La2O3 nanostructures toward DNA gyrase Escherichia coli showed good efficacy for antibacterial activity.

16.
Chempluschem ; 88(10): e202300338, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37736704

RESUMO

Generating highly dispersed metal NPs of the desired size on surfaces such as porous silica is challenging due to wettability issues. Here, we report highly active and well-dispersed Pd incorporated mesoporous MCM-41 (Pd@MCM) using a facile impregnation via a molecular approach based on hydrogen bonding interaction of a palladium ß-diketone complex with surface silanol groups of mesoporous silica. Controlled thermal treatment of so obtained materials in air, argon, and hydrogen provided the catalysts characterized by electron microscopy, nitrogen physisorption, X-ray diffraction and spectroscopy. Gratifyingly, our catalyst provided the lowest ever activation energy (14.3 kJ/mol) reported in literature for dehydrogenation of NaBH4 . Moreover, the rate constant (7×10-3  s-1 ) for the reduction of 4-nitrophenol outperformed the activity of commercial Pd/C (4×10-3  s-1 ) and Pd/Al2 O3 (5×10-3  s-1 ) catalysts.

17.
RSC Adv ; 13(37): 26149-26159, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37664196

RESUMO

This research presents the novel synthesis of CeO2 nanostructures (NSs) doped with a fixed amount of capping agent (polyacrylic acid-PAA) and different concentrations (0.01 and 0.03) of silver (Ag). This work aimed to examine the catalytic and antibacterial efficacy with evidential molecular docking analysis of Ag/PAA doped CeO2. Systematic characterization was used to analyze the effect of Ag and a capping agent on crystal structure, morphology, absorbance wavelength, and the exciton recombination rate of CeO2. The silver metal and capping agent (PAA) were added into CeO2 to reduce the size of NSs, enhancing the catalytic efficacy. These binary dopants (Ag-PAA) based CeO2 revealed remarkable results for catalytic de-colorization of rhodamine B dye and antimicrobial potential as the dopants provide more active sites. Notably, (0.03) Ag/PAA doped CeO2 NSs exhibited a substantial catalytic reduction (98.9%) of rhodamine B dye in an acidic medium. The higher doped CeO2 revealed a significant inhibition zone (3.75 mm) against Escherichia coli at maximal concentration. Furthermore, in silico docking showed the possible inhibitory impact of produced nanomaterials on the fatty acid biosynthesis enzymes FabI and FabH.

18.
RSC Adv ; 13(40): 28008-28020, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37746345

RESUMO

In this research, a fixed concentration (3 wt%) of Ag/PAA and PAA/Ag doped graphene quantum dots (GQDs) were synthesized using the co-precipitation technique. A variety of characterization techniques were employed to synthesize samples to investigate their optical, morphological, structural, and compositional analyses, antimicrobial efficacy, and dye degradation potential with molecular docking analysis. GQDs have high solubility, narrow band gaps, and are suitable for electron acceptors and donors but show less adsorption and catalytic behavior. Incorporating polyacrylic acid (PAA) into GQDs increases the catalytic and antibacterial activities due to the carboxylic group (-COOH). Furthermore, introducing silver (Ag) increased the degradation of dye and microbes as it had a high surface-to-volume ratio. In addition, molecular docking studies were used to decipher the mechanism underlying the bactericidal action of silver and polyacrylic acid-doped graphene quantum dots and revealed inhibition of ß-lactamase and DNA gyrase.

19.
Int J Biol Macromol ; 253(Pt 4): 126827, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37696378

RESUMO

Curcumin (diferuloylmethane), the primary curcuminoid in turmeric rhizome, has been acknowledged as a bioactive compound for numerous pharmacological activities. Nonetheless, the hydrophobic nature, rapid metabolism, and physicochemical and biological instability of this phenolic compound correspond to its poor bioavailability. So, recent scientific advances have found many components and strategies for enhancing the bioavailability of curcumin with the inclusion of biotechnology and nanotechnology to address its existing limitations. Therefore, In this study, copolymerized aqua-gel was synthesized by graft polymerization of poly-acrylic acid (P-AA) on cellulose nanocrystals (CNC), after that Curcuma longa (Cur) was incorporated as dopant (5, 10, 15, and 25 mg) in hydrogel (Cur/C-P) as a stabilizing agent for evaluation of bacterial potential and sewage treatment. The antioxidant tendency of 25 mg Cur/C-P was much higher (72.21 %) than other samples and displayed a catalytic activity of up to 93.89 % in acidic conditions and optimized bactericidal inclinations toward gram-positive bacterial strains. Furthermore, ligand binding was conducted against targeted protein enoyl-[acylcarrier-protein] reductase (FabI) enzyme to comprehend the putative mechanism of microbicidal action of CNC-PAA (CP), Cur/C-P, and curcumin. Our outcomes suggest that 25 mg Cur/C-P hydrogels are plausible sources for hybrid, multifunctional biological activity.


Assuntos
Curcumina , Curcumina/química , Curcuma/química , Simulação de Acoplamento Molecular , Celulose/metabolismo , Hidrogéis/metabolismo , Catálise
20.
RSC Adv ; 13(36): 25305-25315, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37622014

RESUMO

Herein, Bi2O3 quantum dots (QDs) have been synthesized and doped with various concentrations of graphitic carbon nitride (g-C3N4) and a fixed amount of carbon spheres (CS) using a co-precipitation technique. XRD analysis confirmed the presence of monoclinic structure along the space group P21/c and C2/c. Various functional groups and characteristic peaks of (Bi-O) were identified using FTIR spectra. QDs morphology of Bi2O3 showed agglomeration with higher amounts of g-C3N4 by TEM analysis. HR-TEM determined the variation in the d-spacing which increased with increasing dopants. These doping agents were employed to reduce the exciting recombination rate of Bi2O3 QDs by providing more active sites which enhance antibacterial activity. Notably, (6 wt%) g-C3N4/CS-doped Bi2O3 exhibited considerable antimicrobial potential in opposition to E. coli at higher values of concentrations relative to ciprofloxacin. The (3 wt%) g-C3N4/CS-doped Bi2O3 exhibits the highest catalytic potential (97.67%) against RhB in a neutral medium. The compound g-C3N4/CS-Bi2O3 has been suggested as a potential inhibitor of ß-lactamaseE. coli and DNA gyraseE. coli based on the findings of a molecular docking study that was in better agreement with in vitro bactericidal activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...